Contact Us
Contact Us

Kopotka B, Smolke CD. 2019. Production of the cyanogenic glycoside dhurrin in yeast. Met. Eng. Comm. 9: e00092.

Abstract Cyanogenic glycosides are defense compounds found in a wide range of plant species, including many crops. We demonstrate that the cyanogenic glucoside dhurrin, naturally found in sorghum, can be produced at high titers in Saccharomyces cerevisiae, constituting the first report of cyanogenic glycoside production in a microbe. Genetic modifications to increase the supply of the dhurrin precursor tyrosine enabled dhurrin production in excess of 80 mg/L. The dhurrin-producing yeast strain was used as a chassis to investigate previously uncharacterized enzymes identified close to the biosynthetic gene cluster containing the dhurrin pathway enzymes. This work shows the potential of heterologous expression in yeast to facilitate investigations of plant cyanogenic glycoside pathways.

Srinivasan P, Smolke CD. 2019. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat. Comm. 10: 3634.

Abstract Tropane alkaloids (TAs) are a class of phytochemicals produced by plants of the nightshade family used for treating diverse neurological disorders. Here, we demonstrate de novo production of tropine, a key intermediate in the biosynthetic pathway of medicinal TAs such as scopolamine, from simple carbon and nitrogen sources in yeast (Saccharomyces cerevisiae). Our engineered strain incorporates 15 additional genes, including 11 derived from diverse plants and bacteria, and 7 disruptions to yeast regulatory or biosynthetic proteins to produce tropine at titers of 6 mg/L. We also demonstrate the utility of our engineered yeast platform for the discovery of TA derivatives by combining biosynthetic modules from distant plant lineages to achieve de novo production of cinnamoyltropine, a non-canonical TA. Our engineered strain constitutes a starting point for future optimization efforts towards realizing industrial fermentation of medicinal TAs and a platform for the synthesis of TA derivatives with enhanced bioactivities.

Li Y, Li S, Thodey K, Trenchard IJ, Cravens A, Smolke CD. 2018. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA. 115: E3922-31.

Abstract Microbial biosynthesis of plant natural products from simple building blocks is a promising approach toward scalable production and modification of high-value compounds. The pathway for biosynthesis of noscapine, a potential anticancer compound, from canadine was recently elucidated as a 10-gene cluster from opium poppy. Here we demonstrate the de novo production of noscapine in Saccharomyces cerevisiae, through the reconstruction of a biosynthetic pathway comprising over 30 enzymes from plants, bacteria, mammals, and yeast itself, including 7 plant endoplasmic reticulum (ER)-localized enzymes. Optimization directed to tuning expression of pathway enzymes, host endogenous metabolic pathways, and fermentation conditions led to an over 18,000-fold improvement from initial noscapine titers to ∼2.2 mg/L. By feeding modified tyrosine derivatives to the optimized noscapine-producing strain we further demonstrated microbial production of halogenated benzylisoquinoline alkaloids. This work highlights the potential for microbial biosynthetic platforms to support the synthesis of valuable and novel alkaloid compounds, which can advance alkaloid-based drug discovery and development.

Li Y, Smolke CD. 2016. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Comm. 7: 12137.

Abstract Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.

McKeague M, Wang YH, Cravens A, Win MN, Smolke CD. 2016. Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines. Metab. Eng. 38: 191-203.

Abstract Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.

Trenchard IJ, Smolke CD. 2015. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab. Eng. 30: 96-104.

Abstract Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization.

Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. 2015. De novo production of the key branchpoint benzylisoquinoline alkaloid reticuline in yeast. Metab. Eng. 31: 74-83.

Abstract Microbial biosynthesis for plant-based natural products, such as the benzylisoquinoline alkaloids (BIAs), has the potential to address limitations in plant-based supply of established drugs and make new molecules available for drug discovery. While yeast strains have been engineered to produce a variety of downstream BIAs including the opioids, these strains have relied on feeding an early BIA substrate. We describe the de novo synthesis of the major BIA branch point intermediate reticuline via norcoclaurine in Saccharomyces cerevisiae. Modifications were introduced into yeast central metabolism to increase supply of the BIA precursor tyrosine, allowing us to achieve a 60-fold increase in production of the early benzylisoquinoline scaffold from fed dopamine with no supply of exogenous tyrosine. Yeast strains further engineered to express a mammalian tyrosine hydroxylase, four mammalian tetrahydrobiopterin biosynthesis and recycling enzymes, and a bacterial DOPA decarboxylase produced norcoclaurine de novo. We further increased production of early benzylisoquinoline scaffolds by 160-fold through introducing mutant tyrosine hydroxylase enzymes, an optimized plant norcoclaurine synthase variant, and optimizing culture conditions. Finally, we incorporated five additional plant enzymes – three methyltransferases, a cytochrome P450, and its reductase partner – to achieve de novo production of the key branch point molecule reticuline with a titer of 19.2 μg/L. These strains and reconstructed pathways will serve as a platform for the biosynthesis of diverse natural and novel BIAs.

Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD. 2015. Complete biosynthesis of opioids in yeast. Science. 349: 1095-100.

Abstract Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds.

Galanie S, Smolke CD. 2015. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb. Cell Fac. 14: 144.

Abstract BackgroundProtoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. Here, we describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine. ResultsThis yeast strain is engineered to express seven heterologous enzymes, resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. The seven enzymes include three membrane-bound enzymes: the flavin-dependent oxidase berberine bridge enzyme, the cytochrome P450 canadine synthase, and a cytochrome P450 reductase. A number of strategies were implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization, that led to an over 70-fold increase in canadine titer up to 1.8 mg/L. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines, for the first time in a microbial host. We also demonstrate that this strain is viable at pilot scale. ConclusionsBy applying metabolic engineering and synthetic biology strategies for increased conversion of simple benzylisoquinoline alkaloids to complex protoberberine alkaloids, this work will facilitate chemoenzymatic synthesis or de novo biosynthesis of these and other high-value compounds using a microbial cell factory.

Thodey K, Galanie S, Smolke CD. 2014. A microbial biomanufacturing platform for natural and semi-synthetic opioids. Nat. Chem. Biol. 10: 837-44.

Abstract Opiates and related molecules are medically essential, but their production via field cultivation of opium poppy Papaver somniferum leads to supply inefficiencies and insecurity. As an alternative production strategy, we developed baker’s yeast Saccharomyces cerevisiae as a microbial host for the transformation of opiates. Yeast strains engineered to express heterologous genes from P. somniferum and bacterium Pseudomonas putida M10 convert thebaine to codeine, morphine, hydromorphone, hydrocodone and oxycodone. We discovered a new biosynthetic branch to neopine and neomorphine, which diverted pathway flux from morphine and other target products. We optimized strain titer and specificity by titrating gene copy number, enhancing cosubstrate supply, applying a spatial engineering strategy and performing high-density fermentation, which resulted in total opioid titers up to 131 mg/l. This work is an important step toward total biosynthesis of valuable benzylisoquinoline alkaloid drug molecules and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for opioids.

Richard Sherwin

Head of Commercialization

Richard is an industry veteran with more than 30 years of experience in the KSM, API, and intermediate markets. He is responsible for leading the commercialization and revenue generation for Antheia’s robust pipeline of products. Richard brings an exceptional track record of leading international sales teams, driving revenue growth, building strategic partnerships, and delivering innovative products to market, including ANDA and NDA developments. Richard led commercial efforts at some of the leading global pharmaceutical companies and most recently, built his own consultancy business advising a range of clients, including $1B divisions of major multinationals.

Appropriate regulatory submissions will be prepared and submitted to support Antheia’s customers who need to reference and access necessary process-related information.

Yihui Zhu, PhD

Head of Fermentation

Yihui leads the fermentation team at Antheia. With over 25 years of hands-on experience in the field, he brings in-depth knowledge and expertise in microbial metabolism and fermentation process development. He is also skilled in developing comprehensive fermentation data collection, analysis, and visualization systems. Prior to joining Antheia, he served as a fermentation lead at Intrexon and Codexis where he successfully built fermentation labs and teams and led multiple biofuel and biochemical projects to reach stretch milestones and tech transfer. Yihui is passionate about the potential of fermentation and is dedicated to advancing the field through innovative research and development.

Yen-Hsiang Wang, PhD

Head of Strategy, Partnerships, and Finance

Yen-Hsiang leads strategy, partnerships and finance at Antheia. He completed his M.S. and Ph.D. in Bioengineering at Stanford, with extensive research experience in synthetic biology, metabolic engineering and computational modeling. Before joining Antheia, he worked at McKinsey and Tencent with a strong focus in corporate strategy and big data/advanced analytics. At Tencent, he served as Director of Strategy and Business Development for the AI Lab, leading corporate initiatives in healthcare AI/ML applications and commercialization. He also served in AI4H (Artificial Intelligence for Health), a collaboration between WHO and ITU, to establish global standards for AI in healthcare.

Audrey Wang

Head of Financial Planning and Analysis

Audrey leads financial planning and analysis at Antheia. With an MBA from Washington University in St. Louis, Audrey is passionate about leveraging financial analysis, digital technology, and data analytics to guide companies in making optimal investments and strategic business decisions. Audrey has a decade of experience in helping companies solve unique problems and creating long-term impact with unconventional approaches. Before joining Antheia, she was at Vir Biotechnology and Merck where she led various FP&A workstreams, including investment valuation, asset prioritization, and manufacturing sites operation finance support. Audrey completed CFA Level II and passed the U.S. CPA exam in 2011.

Antonij Tjahjadi, CPA

Head of Accounting

Antonij Tjahjadi leads accounting at Antheia and holds active CPA license. He joined Antheia with more than 20 years of experience in corporate accounting, bringing deep expertise in ramping up accounting operations for start-up companies, SEC reporting/technical accounting, and SOX implementation efforts. Before joining Antheia, he held various leading roles in both public and private company settings, including directing accounting functions at Ambys Medicines, where he successfully implemented Netsuite with Point Purchasing integration and set up various accounting policies and processes, and played a key role in the initial public offering of Nutanix, Inc.

Ken Takeoka

Head of Biology

Ken leads the Biology team at Antheia, which incorporates both strain and protein engineering functions. He has more than 16 years of experience in the synthetic biology field, working with leading companies, including Amyris and Novartis. One of his passions is molecular biology tool development and he previously worked to build the foundation for the automated strain engineering pipeline at Amyris. At Novartis, he modernized the molecular biology techniques and established a platform to model mechanisms of antibiotic resistance in a range of organisms.

Suzanne Sato

Head of Downstream Processing

Suzy leads downstream chemistry processes at Antheia. She has 19 years of experience in process development, including route development through synthetic chemistry and scale-up of small molecule APIs for GPCR targets under cGMP for Phase I-III trials. Before joining Antheia, Suzy led a full DSP team at Amyris where she successfully pivoted developments from biofuels hydrocarbon products to pharmaceutical intermediate, flavor, fragrance and nutraceutical products. She led a team that scaled 11 products and took five products to commercial manufacturing.

Farrah Pulce, PMP

Head of Project Management

Farrah leads program and project management at Antheia. She has over 20 years of experience leading program and project management, operations, and engineering for companies across the CPG, aerospace, and automotive industries. Prior to joining Antheia, Farrah implemented and led the sustaining program management team at Impossible Foods. She also led product operations, project management, and cost optimization at Blue Bottle Coffee and Tyson Foods to develop and commercialize new products. As a certified project management professional (PMP), Farrah has a proven record of successful project delivery, improving project management practices, and building collaborative teams.

Jordyn Lee

Head of Communications

Jordyn leads communications and external affairs at Antheia. She brings a decade of multidisciplinary communications experience in helping companies make complex science and technology accessible to broad audiences, all while maintaining technical accuracy and integrity. She has a passion for visionary storytelling and translating impact across the entire communications ecosystem – her work has spanned from public relations to corporate communications to marketing. Jordyn has served as an advisor to a number of different life sciences companies and most recently led corporate communications at Amyris.

Ben Kotopka, PhD

Head of Data Science

As Head of Data Science at Antheia, Ben manages in-house software development and external partnerships for storing and interpreting research data, executing bioinformatics analyses, and streamlining business processes. Prior to Antheia, Ben worked as an academic researcher at the intersection of machine learning, bioinformatics, and synthetic biology. Following this, as an entrepreneur and consultant, he developed and deployed data science solutions for biotechnology applications ranging from metabolomics-driven compound discovery to MRI segmentation.

Guerin Kob

Head of Supply Chain

Guerin is responsible for leading the design, development, management and improvement of Antheia’s end-to-end global supply chain. He has over 15 years of experience leading high-performing supply chain and procurement teams at leading biotechnology and specialty chemical companies, with extensive experience in process development and end-to-end supply chain optimization. Prior to joining Antheia, Guerin served as Senior Director of Global Supply Chain for Sumitomo Chemical’s biotechnology division with Valent Biosciences, where he led the end-to end supply chain including procurement, logistics and distribution, integrated business planning, materials management, customer service, and supply planning functions globally.

Pavel Aronov, PhD

Head of Bioanalytics

Pavel leads the Bioanalytics team at Antheia. He has 20 years of experience in analytical and clinical chemistry, mass spectrometry, chromatography, and metabolomics. Pavel built and led the original Chemistry and Analytics team at Impossible Foods enabling strain development, fermentation, DSP, regulatory, QC, and scale-up of leghemoglobin biomanufacturing. During his academic career at UC Davis and Stanford University Pavel developed a vitamin D assay used by all major clinical diagnostics laboratories and pioneered metabolomics studies to investigate kidney disease and microbiome.

Jesse Ahrendt

Head of Quality Assurance and Regulatory Affairs

Jesse has more than 25 years of experience in regulatory affairs, quality systems, manufacturing quality, and regulated industries, ranging from early- to late-stage pharmaceuticals, biomanufacturing, consumer care, and medical devices. He has supported global product launches and the underlying quality supply chain components in industries that require strict adherence to internationally accepted quality standards. Before Antheia, he led quality efforts at Zymergen and Sandoz, and supported many global pharmaceutical companies during his time in Biotech Consulting at NSF International, all to bring quality to the forefront in manufacturing, standardize global processes, and support customer regulatory requirements.

Heidi Pucel

Chief People Officer

Heidi is a results-driven human resources executive and HR business partner who leverages decades of experience in empowering, motivating, and inspiring to drive transformation within high-performing and rapidly-growing workforces. A certified executive coach and passionate advocate for people-oriented solutions, Pucel serves as a partner to executive teams to design programs that support employee development, engagement, and recruitment and retention. Pucel most recently served as Chief People Officer for Countsy, where she worked as an interim HR executive for clients in the biotechnology and software industries, such as Ceribell and Tune Therapeutics.

Zack McGahey

Chief Operating Officer

Zack is a leading executive in operations management, specializing in bioprocess engineering and manufacturing management. He has over 20 years of experience leading manufacturing functions for companies across the pharmaceutical, synthetic biology, diagnostics, and automotive industries. Before joining Antheia, Zack was VP of manufacturing and capex project management at Zymergen. He also gained experience managing commercial scale facilities operations for Tesla, where he was responsible for managing 10 million square feet of factory, lab and warehouse space during the Model 3 ramp.

Kristy Hawkins, PhD

Co-Founder & CSO

Kristy has over 20 years of experience in the field of synthetic biology, focusing on yeast metabolic engineering for the production of small molecules. She did the founding work on the benzylisoquinoline alkaloid pathway during her graduate studies and gained valuable industry experience at Amyris and Lygos. Kristy is an expert in tool development, high-throughput screening, and host strain and heterologous pathway engineering.

Christina Smolke, PhD

Co-Founder & CEO

Christina is a pioneer in synthetic biology and metabolic engineering, where she has over 20 years of experience. As Professor of Bioengineering and Chemical Engineering at Stanford University, her laboratory led the breakthrough research to engineer baker’s yeast to produce some of the most complex and valuable medicines known. Under her leadership, Antheia’s synthetic biology platform enables new possibilities for drug discovery and efficient, sustainable, transparent, and on-demand drug manufacturing at scale. Her vision and accomplishments have garnered numerous awards, including the Chan-Zuckerberg Biohub Investigator, NIH Director’s Pioneer Award, Nature’s 10, Novozymes Award for Excellence in Biochemical Engineering, and TR35 Award.

Antheia Announces New Funding

Appropriate regulatory submissions will be prepared and submitted to support Antheia’s customers who need to reference and access necessary process-related information.